| 934 | 19 | 158 |
| 下载次数 | 被引频次 | 阅读次数 |
深部矿井多工作面大空间开采导致大能量强矿震事件频发,同时地表伴随剧烈的下沉变形,掌握具体地层条件下地表移动与强矿震时空分布响应规律对于深部矿井动力灾害防控意义重大。以兖州矿区东滩煤矿63_上04,63_上05,63_上06工作面为工程背景,基于关键层理论与复合破断原理,对东滩煤矿复杂地层进行了科学划分,现场实测了深井厚硬岩层下多工作面开采地表沉降规律及强矿震时空分布特征,分析了多工作面连续开采下关键层组运移演化规律,揭示了关键层组破断演化、地表沉陷规律与大能量强矿震分布的联动效应。研究结果表明:(1)东滩煤矿六采区地层可以划分出4个关键层组,每个关键层组包含一层关键层和若干坚硬岩层,相比单一关键层,关键层组发生复合破断时的矿震能量更高、破断步距更大,对上覆岩层的运移及地表下沉影响也更为突出。(2)地表沉陷观测结果显示,63_上04,63_上05工作面开采结束,地表下沉系数分别为0.189,0.458;63_上06工作面当前已开采808.29 m,地表下沉系数为0.492,受多关键层组地质赋存特征影响,东滩煤矿六采区地表下沉系数远小于兖州矿区其他矿井平均地表下沉系数(0.75~0.85),地表未达到充分采动,下沉趋势为:无明显下沉–下沉空间显著–下沉空间逐渐增大。(3)矿震监测结果显示,63_上04工作面开采时,大能量强矿震事件主要集中在低位关键层组Ⅰ,Ⅱ层位,随着多工作面连续开采,大能量强矿震逐渐向高位转移,逐渐集中至关键层组Ⅱ,Ⅲ层位。(4)由地表沉陷及大能量强矿震实测数据可知,东滩煤矿六采区多工作面连续开采下关键层组复合破断覆岩结构呈“断悬”结构–“铰接”结构交替上升,逐层演化过程验证了覆岩运动、地表沉陷及大能量强矿震3者之间存在一定的联动效应。研究成果可对类似工程地质条件下多关键层组复合破断研究及大能量强矿震预控提供一定参考。
Abstract:Large-space mining in multiple working faces in deep mines leads to frequent large-energy strong mine earthquakes,while the surface is accompanied by severe subsidence and deformation.Mastering the spatial and temporal distribution response law of surface movement and strong mine earthquakes under specific stratum conditions is of great significance for the prevention of dynamic disasters in deep mines.Based on the engineering circumstances of the 63upper04,63upper05 and 63upper06 working faces in the Dongtan Coal Mine of Yanzhou Mining Area,the complex geological strata are scientifically classified using the Key Stratum Theory and the principle of composite failure.Field measurements are conducted to investigate the surface subsidence patterns and the spatiotemporal distribution characteristics of strong mining-induced seismicity during multi-working face mining under the deep and hard rock layer.The evolutionary patterns of the key stratum group during the continuous mining of multiple working faces is analyzed,revealing the interactive effects among key stratum group failure,surface subsidence patterns,and the distribution of large-energy strong mining-induced seismic events.The main conclusions are as follows:(1) The geological strata in the Dongtan Coal Mine Six Mining Area can be divided into four key stratum groups,each comprising one key stratum and several hard rock layers.Compared to a single key stratum,the seismic energy is higher and the failure step distance is larger when a key stratum group experiences composite failure,resulting in a more pronounced impact on the movement of overlying rock layers and surface subsidence.(2) The observation results of surface subsidence show that the surface subsidence coefficients of the 63upper04 and 63upper05 working faces are 0.189 and 0.458,respectively,and the 63upper06 working faces have been mined for 808.29 m,and the surface subsidence coefficient is 0.492,which is much smaller than the average surface subsidence coefficient of other mines in Yanzhou mining area(0.75-0.85) due to the geological characteristics of multiple key layer groups.Also, the surface is not fully mined,and the subsidence sequentially changes from no obvious subsidence,significant subsidence,to the trend that the subsidence space is gradually increasing.(3) During the mining of 63upper04 working face,the strong mine earthquake events with large energy are mainly concentrated near the low key strata group Ⅰ and Ⅱ.With the continuous mining of multiple working faces,the large-energy strong mine earthquake gradually shifts to the high level.gradually concentrated near the second and third layers of the key strata.(4) According to the measured data of surface subsidence and high-energy strong mine earthquakes,the composite cracking overburden structure of the key layer group under the continuous mining of multiple working faces of the No.6 mining area of Dongtan Coal Mine changs between "fault-suspended" structure and "hinged" structure,and the layer-by-layer evolution process verifies that there is a certain linkage effect between overburden movement,surface subsidence and high-energy strong ore earthquake.The research results have a certain guiding significance for the study of compound fracture of multi-key strata and the pre-control of high-energy strong mine earthquakes under similar engineering geological conditions.
[1]荣海,于世棋,王雅迪,等.坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J].采矿与岩层控制工程学报, 2022, 4(6):063026.RONG Hai, YU Shiqi, WANG Yadi, et al. Analysis of structural instability movement of hard overburden and its influence mechanism on rockburst[J]. Journal of Mining and Strata Control Engineering, 2022, 4(6):063026.
[2]张明,姜福兴,陈广尧,等.基于厚硬岩层运动状态的采场应力转移模型及其应用[J].岩石力学与工程学报,2020, 39(7):1396–1407.ZHANG Ming, JIANG Fuxing, CHEN Guangyao, et al.A stope stress transfer model based on the motion state of thick and hard rock layers and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7):1396–1407.
[3]陈玉涛.邻正断层不规则孤岛工作面冲击危险性评估方法研究[J].矿业安全与环保, 2022, 49(6):118–122,129.CHEN Yutao. Study on impact risk assessment method of irregular island working face of adjacent positive fault[J].Mining Safety&Environmental Protection, 2022, 49(6):118–122, 129.
[4]蒋金泉,张开智.综放开采矿震的成因及防治对策[J].岩石力学与工程学报, 2006, 25(S1):3276–3282.JIANG Jinquan, ZHANG Kaizhi. Cause and control method of mine earthquake in fully mechanized top coal caving mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1):3276–3282.
[5]张海洋,李小萌,孙利辉.大倾角煤层开采地表沉陷规律研究[J].煤炭工程, 2022, 54(6):108–112.ZHANG Haiyang, LI Xiaomeng, SUN Lihui. Regulation of surface subsidence over mining coal seam with large dip angle[J]. Coal Engineering, 2022, 54(6):108–112.
[6]陈绍杰,刘瑞,徐贞社,等.不同覆岩地层正断层下盘煤层开采地表下沉规律[J].山东科技大学学报(自然科学版), 2023, 42(1):38–48.CHEN Shaojie, LIU rui, XU Zhenshe, et al. Surface subsidence laws of footwall coal seam mining of normal fault under different overburden strata[J]. Journal of Shandong University of Science and Technology(Natural Science), 2023, 42(1):38–48.
[7]冯泽伟,浮耀坤,胡振琪,等.陕北风积沙区超长工作面地表移动变形特征研究[J].煤炭工程, 2023, 55(7):120–125.FENG Zewei, FU Yaokun, HU Zhenqi, et al. Characteristics of surface movement and deformation of super-long working face in eolian sand region in Northern Shaanxi[J]. Coal Engineering, 2023, 55(7):120–125.
[8]蒋旭梓,李新举,闵祥宇,等.济宁井工矿区不同开采条件对沉陷阶段的影响[J].采矿与岩层控制工程学报,2022, 4(6):063028.JIANG Xuzi, LI Xinju, MIN Xiangyu, et al. Influence of different underground mining conditions on the ground surface subsidence in the Jining coal district[J]. Journal of Mining and Strata Control Engineering, 2022, 4(6):063028.
[9]郭惟嘉,孙文斌.强冲击地压矿井地表非连续移动变形特征[J].岩石力学与工程学报, 2012, 31(S2):3514–3519.GUO Weijia, SUN Wenbin. Surface discontinuous movement and deformation characteristics of strong rockburst mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2):3514–3519.
[10]李永靖,张向东,兰常玉,等.矿山地下岩层移动变形用于预测矿震的研究[J].中国矿业, 2005, 14(10):66–68.LI Yongjing, ZHANG Xiangdong, LAN Changyu, et al.The moving deformation of underground mining bed on the study of pre-estimation on mineral earthquake[J].China Mining Magazine, 2005, 14(10):66–68.
[11]曹安业,赵书宁,孙伟,等.不规则工作面开采矿震活动规律及其致冲风险控制研究[J].煤矿安全, 2023,54(7):1–10.ANYE CAO, ZHAO Shuning, SUN wei, et al. Research on law of shock bump activity in irregular face and control of inducing rock burst risk[J]. Safety in Coal Mines,2023, 54(7):1–10.
[12]王乃国,朱斯陶,王慧涛,等.深厚表土薄基岩综放工作面地表沉陷与冲击地压联动效应研究[J].采矿与安全工程学报, 2016, 33(2):214–219.WANG Naiguo, ZHU Sitao, WANG Huitao, et al. Connected effect between surface subsidence and rock burst in fully mechanized caving face under deep alluvium[J].Journal of Mining&Safety Engineering, 2016, 33(2):214–219.
[13]唐巨鹏,潘一山,徐方军.根据地表下沉预测冲击地压的研究[J].矿山压力与顶板管理, 2002, 19(3):107–108, 118.TANG Jupeng, PAN Yishan, XU Fangjun. Study on predicting rock burst according surface subsidence[J].Ground Pressure and Strata Control, 2002, 19(3):107–108, 118.
[14]张广超,曲治,孟祥军,等.远场高位厚硬岩层破断运动机理及响应规律研究[J].煤炭科学技术, 2023, 51(11):12–22.ZHANG Guangchao, QU Zhi, MENG Xiangjun, et al.Study on mechanism and response of fracture and movement of the far-field high-position hard-and-hick stratum[J]. Coal Science and Technology, 2023, 51(11):12–22.
[15]郭惟嘉,孔令海,陈绍杰,等.岩层及地表移动与冲击地压相关性研究[J].岩土力学, 2009, 30(2):447–451.GUO Weijia, KONG Linghai, CHEN Shaojie, et al. Correlation between rock burst and movement of strata and ground surface[J]. Rock and Soil Mechanics, 2009, 30(2):447–451.
[16]任文涛,郭鹏慧,曲柱,等.不同能级矿震波对深部盘区大巷围岩扰动效应[J].煤矿安全, 2023, 54(7):11–18.REN Wentao, GUO Penghui, QU Zhu, et al. Disturbance effect of shock bump waves with different energy levels on surrounding rock of deep roadway[J]. Safety in Coal Mines, 2023, 54(7):11–18.
[17]左建平,孙运江,钱鸣高.厚松散层覆岩移动机理及“类双曲线”模型[J].煤炭学报, 2017, 42(6):1372–1379.ZUO Jianping, SUN Yunjiang, QIAN Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6):1372–1379.
[18]王桂利,孙文杰,赵猛,等.深部临空巨厚坚硬顶板断裂矿震规律及成因研究[J].能源与环保, 2021, 43(10):300–305.WANG Guili, SUN Wenjie, ZHAO Meng, et al. Study on law and cause of mine earthquake with huge thick and hard roof in deep space[J]. China Energy and Environmental Protection, 2021, 43(10):300–305.
[19]李春意,李彦辉,梁为民,等.大采深巨厚砾岩综放开采地表沉陷规律[J].河南理工大学学报(自然科学版),2013, 32(6):703–708.LI Chunyi, LI Yanhui, LIANG Weimin, et al. Research on surface subsidence law under condition of deep mining with thick overburden conglomerate based on field measurement datum[J]. Journal of Henan Polytechnic University(Natural Science), 2013, 32(6):703–708.
[20]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2010.QIAN Minggao, SHI Pingwu, XU Jialin. Mine pressure and rock formation control[M]. Xuzhou:China University of Mining and Technology Press, 2010.
[21]许家林,钱鸣高.覆岩关键层位置的判别方法[J].中国矿业大学学报, 2000, 29(5):21–25.XU Jialin, QIAN Minggao. Method to distinguish key strata in overburden[J]. Journal of China University of Mining and Technology, 2000, 29(5):21–25.
[22]谭志祥,邓喀中.综放面地表变形预计参数综合分析及应用研究[J].岩石力学与工程学报, 2007, 26(5):1041–1047.TAN Zhixiang, DENG Kazhong. Comprehensive analysis and application study on ground deformation prediction parameters of fully-mechanized mining with sublevel caving[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5):1041–1047.
[23]顾伟.厚松散层下开采覆岩及地表移动规律研究[D].徐州:中国矿业大学, 2014.GU Wei. Study on laws of overburden and surface movement when mining under thick alluvium[D]. Xuzhou:China University of Mining and Technology, 2014.
[24]蒋乾.济宁矿区厚松散层下开采地表沉陷规律研究[D].徐州:中国矿业大学, 2023.JIANG Qian Research on surface subsidence law during mining under thick and loose layers in Jining mining area[D]. Xuzhou:China University of Mining and Technology, 2023.
[25]李晓斌,李全生,韩鹏华,等.高强度开采地表损伤程度分类判别与控制研究[J].采矿与岩层控制工程学报,2022, 4(3):033014.LI Xiaobin, LI Quansheng, HAN Penghua, et al. Identification of surface damage degree in high-intensity mining and control technologies[J]. Journal of Mining and Strata Control Engineering, 2022, 4(3):033014.
[26]田向辉,李振雷,宋大钊,等.某冲击地压频发工作面微震冲击前兆信息特征及预警方法研究[J].岩石力学与工程学报, 2020, 39(12):2471–2482.TIAN Xianghui, LI Zhenlei, SONG Dazhao, et al. Study on microseismic precursors and early warning methods of rockbursts in a working face[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12):2471–2482.
[27]蒋金泉,张培鹏,聂礼生,等.高位硬厚岩层破断规律及其动力响应分析[J].岩石力学与工程学报, 2014, 33(7):1366–1374.JIANG Jinquan, ZHANG Peipeng, NIE Lisheng, et al.Fracturing and dynamic response of high and thick stratas of hard rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7):1366–1374.
基本信息:
DOI:10.13532/j.jmsce.cn10-1638/td.20240010.001
中图分类号:TD325
引用信息:
[1]张广超,张广有,周广磊,等.多工作面连续开采地表沉陷与强矿震联动响应规律[J].采矿与岩层控制工程学报,2024,6(01):117-130.DOI:10.13532/j.jmsce.cn10-1638/td.20240010.001.
基金信息:
国家自然科学基金面上资助项目(52374098);; 山东省优秀青年基金资助项目(ZR202211070181);; 山东省高等学校青创团队计划资助项目(2022KJ212)