| 460 | 6 | 152 |
| 下载次数 | 被引频次 | 阅读次数 |
为解决高水材料充填成本高、物理力学性能差等问题,选用低标硫铝酸盐水泥熟料为主要原料,通过物理试验探究了低标硫铝酸盐水泥熟料高水材料在不同外加剂剂量、水灰比、水温下的物理力学性能,并通过工艺性试验测试了实际应用效果。研究结果表明:(1)不同条件下高水材料物理力学性能不同的主要原因在于其钙矾石的生成速率及生成量受到影响;(2)以低标型硫铝酸盐水泥熟料作为高水材料原料时,使用一定量外加剂能够改善其样貌并显著提升其强度;(3)降低水灰比能够显著提升高水材料的早期强度及峰值强度,且每提高0.1的水灰比,平均各龄期强度下降约11%;(4)水温对于高水材料初凝时间的影响高于终凝时间,对早期强度起促进作用,水温每上升2℃, 1d强度增加约6.8%;(5)影响高水材料强度的各项因素排序为:外加剂>水灰比>水温;(6)现场应用低标型硫铝酸盐水泥熟料高水材料后,巷道变形量较小,取得较好的留巷效果。
Abstract:To address challenges related to the high cost and suboptimal physical and mechanical properties of high-water content materials, this study selected low-grade sulfoaluminate cement clinker as the primary raw material. Through physical experiments, it investigated the physical and mechanical behaviors of high-water materials prepared from low-grade sulfoaluminate cement clinker under varying conditions of admixture dosage, waterto-cement ratio, and water temperature. Process experiments further assessed the efficacy of these materials in practical applications. The findings revealed:(1) Variations in the physical and mechanical properties of highwater materials under different conditions are primarily due to the affected rate and quantity of ettringite formation.(2) Utilizing low-grade sulfoaluminate cement clinker as the raw material and adding specific admixtures significantly improved the appearance and strength of the high-water materials.(3) Reducing the water-to-cement ratio markedly enhanced both the early and peak strengths of the high-water materials, with an average strength decrease of about 11% for every 0.1 increase in the ratio.(4) Water temperature more significantly influenced the initial setting time than the final setting time of high-water materials and positively affected early strength, with a 2 ℃ increase in temperature resulting in approximately a 6.8% strength increase after one day.(5) The order of factors affecting the strength of high-water materials was admixture > water-to-cement ratio > water temperature.(6) The field application of high-water materials made from low-grade sulfoaluminate cement clinker resulted in minimal roadway deformation, achieving satisfactory airfilling outcomes.
[1]缪协兴,巨峰,黄艳利,等.充填采煤理论与技术的新进展及展望[J].中国矿业大学学报, 2015, 44(3):391–399, 429.MIAO Xiexing, JU feng, HUANG Yanli, et al. New development and prospect of backfilling mining theory and technology[J]. Journal of China University of Mining&Technology, 2015, 44(3):391–399, 429.
[2]许家林,轩大洋,朱卫兵.充填采煤技术现状与展望[J].采矿技术, 2011(3):24–30.XU Jialin, XUAN Dayang, ZHU Weibing. The current status and prospects of filling coal mining technology[J].Mining Technology, 2011(3):24–30.
[3]刘庆,王强,吴蓬,等.赤泥在胶凝材料中的应用研究进展[J].山东科技大学学报(自然科学版), 2022, 41(3):66–74.LIU Qing, WANG Qiang, WU Peng, et al. Research progress in application of red mud in cementitious materials[J]. Journal of Shandong University of Science and Technology(Natural Science), 2022, 41(3):66–74.
[4]孙文杰,殷伟,欧阳神央,等.碱渣改良矸石胶结充填材料力学性能试验研究[J].煤矿安全, 2022, 53(2):20–26.SUN Wenjie, YIN Wei, OUYANG Shenyang, et al. Experimental study on mechanical properties of gangue cemented filling material improved by alkali residue[J].Safety in Coal Mines, 2022, 53(2):20–26.
[5]苏红艳,宋平新,何强.不同养护温度下水泥基尾砂胶结充填体的力学特性及能量演化规律[J].采矿与岩层控制工程学报, 2023, 5(2):023013.SU Hongyan, SONG Pingxin, HE Qiang. Mechanical properties and energy evolution of cemented tailings backfill at different curing temperatures[J]. Journal of Mining and Strata Control Engineering, 2023, 5(2):023013.
[6]候普尧,傅开彬,查威,等.四川某尾砂充填材料物理性能及其重金属稳定性研究[J].金属矿山, 2022(9):216–222.HOU Puyao, FU Kaibin, ZHA Wei, et al. Study on physical properties and heavy metal stability of a tailings filling material from Sichuan[J]. Metal Mine, 2022(9):216–222.
[7]肖博,王宇轩,王梓旭,等.固体充填开采中的矸石粒径级配优化试验[J].采矿与岩层控制工程学报, 2022,4(1):013516.XIAO Bo, WANG Yuxuan, WANG Zixu, et al. Experimental on optimization of gangue particle size gradation in solid filling mining[J]. Journal of Mining and Strata Control Engineering, 2022, 4(1):013516.
[8]李超,陈登红,曹天伟,等.高掺量气化渣膏体充填材料强度性能研究[J].煤炭工程, 2023, 55(8):124–129.LI Chao, CHEN Denghong, CAO Tianwei, et al. Study on strength properties of paste filling material with high content of gasified slag[J]. Coal Engineering, 2023,55(8):124–129.
[9]吕文玉,李世杰,伍永平,等.“膏体–矸石”复合承载结构的力学特性试验研究[J].采矿与岩层控制工程学报, 2023, 5(5):053513.LYU Wenyu, LI Shijie, WU Yongping, et al. Experimental study on mechanical properties of''paste-gangue''composite bearing structure[J]. Journal of Mining and Strata Control Engineering, 2023, 5(5):053513.
[10]李新旺,温学君,程立朝,等.矸石粉替代粉煤灰膏体充填材料性能研究[J].煤炭工程, 2023, 55(1):136–142.LI Xinwang, WEN Xuejun, CHENG Lichao, et al. Performance of paste filling material with gangue powder replacing fly ash[J]. Coal Engineering, 2023, 55(1):136–142.
[11]宁建国,刘学生,史新帅,等.矿井采空区水泥–煤矸石充填体结构模型研究[J].煤炭科学技术, 2015,43(12):23–27.NING Jianguo, LIU Xuesheng, SHI Xinshuai, et al.Study on cement-coal refuse backfill structure model of mining goaf in underground mine[J]. Coal Science and Technology, 2015, 43(12):23–27.
[12]李建杰,丁全录,佘海龙.硫铝酸盐–铝酸盐水泥体系高水充填材料的研制试验[J].煤炭学报, 2012, 37(1):39–43.LI Jianjie, DING Quanlu, SHE Hailong. Experimental study on high-moisture filling material prepared with sulphoaluminate-aluminate cement[J]. Journal of China Coal Society, 2012, 37(1):39–43.
[13]鄢德恒.窄高水材料巷旁充填沿空留巷围岩偏应力演化及控制[J].煤炭工程, 2023, 55(2):45–51.YAN Deheng. Evolution of deviatoric stress and control of surrounding rock at gob-side entry retaining filled with narrow high-water material[J]. Coal Engineering, 2023,55(2):45–51.
[14]曹庆华,江振鹏,王方田,等.深井孤岛煤柱工作面沿空留巷支护技术研究[J].矿业安全与环保, 2023, 50(3):56–61, 67.CAO Qinghua, JIANG Zhenpeng, WANG Fangtian, et al.Study on support technology of gob-side entry retaining in isolated island coal pillar working face in the deep well[J]. Mining Safety&Environmental Protection,2023, 50(3):56–61, 67.
[15]张淑坤,王来贵,杨浩杰,等.深部巷道功能性支护构建及数值模拟研究[J].采矿与岩层控制工程学报,2023, 5(1):013012.ZHANG Shukun, WANG Laigui, YANG Haojie, et al.Construction and numerical simulation research of functional supporting in deep roadways[J]. Journal of Mining and Strata Control Engineering, 2023, 5(1):013012.
[16]曹其嘉,陈勇,郝胜鹏.深部沿空留巷巷旁充填材料配比及工程应用[J].煤炭技术, 2016, 35(8):75–78.CAO Qijia, CHEN Yong, HAO Shengpeng. Prescription of roadside filling materials in deep gob-side entry retaining and engineering applications[J]. Coal Technology,2016, 35(8):75–78.
[17] KAMILE Tosun, BüLENT Baradan. Effect of ettringite morphology on DEF-related expansion[J]. Cem Concr Compos, 2010, 32:271–280.
[18]汪华莉,何文贵,周凯.水泥复合充填材料抗硫酸盐侵蚀性能研究[J].矿业研究与开发, 2023, 43(11):39–44.WANG Huali, HE Wengui, ZHOU Kai. Study on the sulfate erosion resistance of cement composite filling materials[J]. Mining Research and Development, 2023,43(11):39–44.
[19]冯成功,高岗荣,冯旭海.水泥胶结黄土作为煤矿老空区充填材料试验研究[J].中国煤炭, 2017, 43(2):118–122.FENG Chenggong, GAO Gangrong, FENG Xuhai. Experimental study on cement bond loess as filling materials in coal goaf[J]. China Coal, 2017, 43(2):118–122.
[20]钱觉时,余金城,孙化强,等.钙矾石的形成与作用[J].硅酸盐学报, 2017, 45(11):1569–1581.QIAN Jueshi, YU Jincheng, SUN Huaqiang, et al. Formation and function of ettringite in cement hydrates[J].Journal of the Chinese Ceramic Society, 2017, 45(11):1569–1581.
[21] RAMLOCHAN T, THOMAS M D A, HOOTON R D.The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature:Part II:Microstructural and microchemical investigations[J]. Cem Concr Res,2004, 34(8):1341–1356.
[22]王雨利,路会娟,杨宇杰.氟石膏对高水充填材料性能的影响[J].煤炭科学技术, 2023, 51(6):42–51.WANG Yuli, LU Huijuan, YANG Yujie. The effect of fluorogypsum on the properties of high water filling materials[J]. Coal Science and Technology, 2023, 51(6):42–51.
[23]朱春琪,田稳苓,姜磊,等.玄武岩纤维增强水泥长期力学性能试验研究[J].山东科技大学学报(自然科学版), 2021, 40(4):49–55.ZHU Chunqi, TIAN Wenling, JIANG Lei, et al. Experimental study on long-term mechanical properties of basalt fiber reinforced cement[J]. Journal of Shandong University of Science and Technology(Natural Science),2021, 40(4):49–55.
[24]马砺,高宇,向崎,等.泡沫掺量对快硬水泥固化充填特性的影响[J].煤矿安全, 2018, 49(5):67–70.MA Li, GAO Yu, XIANG Qi. Effect of foam content on filling characteristics of fast hardening cement solidification[J]. Safety in Coal Mines, 2018, 49(5):67–70.
[25]张钊,刘长武,王一冰,等.改性高水材料抗压、抗剪强度特征及对比分析[J].工程科学学报, 2021, 43(4):552–560.ZHANG Zhao, LIU Changwu, WANG Yibing, et al.Characteristics and comparative analysis of compressive and shear strengths of modified high-water materials[J].Chinese Journal of Engineering, 2021, 43(4):552–560.
[26]刘丹丹.高水速凝材料水化硬化机理研究[D].徐州:中国矿业大学, 2015.LIU Dandan. Study on hydrating and hardening mechanisms of high-water rapid-setting material[D]. Xuzhou:China University of Mining&Technology, 2015.
[27] NISHIKAWA T, SUZUKI K, ITO S, et al. Decomposition of synthesized ettringite by carbonation[J]. Cem Concr Res, 1992, 22(1):6–14.
基本信息:
DOI:10.13532/j.jmsce.cn10-1638/td.2024.02.006
中图分类号:TD803
引用信息:
[1]陈志松,徐佑林,江泽标,等.基于低标硫铝酸盐水泥熟料的高水材料物理力学性能及应用[J].采矿与岩层控制工程学报,2024,6(02):146-156.DOI:10.13532/j.jmsce.cn10-1638/td.2024.02.006.
基金信息:
贵州省科技计划资助项目(黔科合支撑[2023]一般305)