nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2024, 03, v.6;No.24 108-117
等效非均匀荷载条件下梯形截面岩石力学特性试验研究
基金项目(Foundation): 国家自然科学基金资助项目(52174076);; 湖南省自然科学基金资助项目(2023JJ30261)
邮箱(Email): 1042400113@qq.com;
DOI: 10.13532/j.jmsce.cn10-1638/td.2024.03.001
摘要:

基于巷道开挖过程中围岩应力转移分布特点,着重探究非均匀荷载下岩体变形规律。提出了新的岩石力学试验方法,该方法根据岩石应力–应变曲线,加工出特定的梯形截面试件及相应的刚性垫片,以实现单轴压缩时的轴向荷载非均匀分布。计算了梯形截面试件压缩时荷载分布与截面高度的关系,并对试验条件下的试件应力分布与岩石状态分区进行讨论,在右侧面高度为75 mm时试件破坏前左侧面处于塑性变形阶段,在右侧面高度为85 mm时试件破坏前左侧面仍处于弹性变形阶段。得到了非均匀荷载压缩条件下单一完整岩体的变形特性;梯形截面砂岩破坏前有明显的分区,各点位塑性硬化程度不一致,S85试件点位3右侧处塑性硬化程度最大,S75试件点位2右侧处塑性硬化程度最大。试验结果表明,非均匀荷载压缩条件下的岩石呈非线性变形特征;同时,岩石局部的损伤会加快附近岩石的塑性软化。提出了非均匀荷载条件下不同竖向截面内轴向应变差会引起附加切应力,附加切应力在中性面上、下方向相反,大小与应变变化率成正相关。在附加切应力作用下,岩石单元最大剪应力平面角度增大,试件破坏形态由原本对“核”形态转变为沿着斜面倾向拉长的相对棱台状。

Abstract:

Based on the characteristics of stress transfer distribution in surrounding rock during roadway excavation, this study focuses on exploring the deformation law of rock mass under non-uniform loading. A new rock mechanics testing method has been proposed, in which rock specimens of the specific trapezoidal cross section were prepared and corresponding rigid pads were fabricated based on the stress-strain curve of rocks to achieve non-uniform distribution of axial loads during uniaxial compression. The relationship between load distribution and the height of cross section during compression of trapezoidal section specimens was calculated, and the stress distribution of specimens under test conditions and rock state zoning were discussed. When the height of the right side is 75 mm, the left side of the specimen was in the plastic deformation stage before failure, while the of height of right side reaches 85 mm, the specimen was still in the elastic deformation stage before failure. From the tests,the deformation characteristics of a single intact rock mass under non-uniform load compression conditions was obtained. Obvious zoneing phenomenon was observed before the failure of trapezoid-sectional sandstone, wherethe degree of plastic hardening at each point is inconsistent. The plastic hardening degree reached its maximum at point 3 on the right side of S85 specimen, and it reaches its maximum at point 2 on the right side of S75 specimen. The results indicate that rocks under non-uniform load compression exhibit nonlinear deformation characteristics, and the local damage accelerated the plastic softening of rocks nearby. It is proposed that under non-uniform loading conditions, the difference in axial strain within different vertical cross sections caused additional shear stress.The induced shear stresses are positively correlated with the rate of strain change,but there directions opposite in the upper and lower directions of the neutral plane. Under the action of additional shear stress, the plane angle of the maximum shear stress of the rock element increased, and the specimen failure mode changed from the original ''core''shape to a relatively elongated pyramid shape along the inclined plane.

参考文献

[1] PENG SS. Coal mine ground control:Second edition[M].New York:John Wiley&Sons Inc, 1986.

[2] REZAEI M, HOSSAINI MF, MAJDI A. Determination of longwall mining-induced stress using the strain energy method[J]. Rock Mech Rock Eng, 2015, 48(6):2421–2433.

[3]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报, 1994, 19(1):21–32.DONG Fangting, SONG Hongwei, GUO Zhihong, et al.Roadway support theory based on broken rock zone[J].Journal of China Coal Society, 1994, 19(1):21–32.

[4]余伟健,吴根水,刘海,等.薄煤层开采软弱煤岩体巷道变形特征与稳定控制[J].煤炭学报, 2018, 43(10):2668–2678.YU Weijian, WU Genshui, LIU Hai, et al. Deformation characteristics and stability control of soft coal-rock mining roadway in thin coal seam[J]. Journal of China Coal Society, 2018, 43(10):2668–2678.

[5]陈岩,左建平,宋洪强,等.煤岩组合体循环加卸载变形及裂纹演化规律研究[J].采矿与安全工程学报,2018, 35(4):826–833.CHEN Yan, ZUO Jianping, SONG Hongqiang, et al.Deformation and crack evolution of coal-rock combined body under cyclic loading-unloading effects[J]. Journal of Mining&Safety Engineering, 2018, 35(3):826–833.

[6]韩森,王卫军,董恩远,等.基于支护干涉的巷道围岩蝶形塑性区控制方法研究[J].采矿与安全工程学报,2023, 40(4):743–753.HAN Sen, WANG Weijun, DONG Enyuan, et al. Control method of butterfly plastic zone of roadway surrounding rock based on support interference[J]. Journal of Mining&Safety Engineering, 2023, 40(4):743–753.

[7]赵志强,马念杰,刘洪涛,等.巷道蝶形破坏理论及其应用前景[J].中国矿业大学学报, 2018, 47(5):969–978.ZHAO Zhiqiang, MA Nianjie, LIU Hongtao, et al. A butter fly failure theory of rock mass around roadway and its application prospect[J]. Journal of China University of Mining&Technology, 2018, 47(5):969–978.

[8] WANG Xinfeng, ZHANG Yiying, ZHAO Qiao, et al.Space-time evolution characteristics of deformation and failure of surrounding rock in deep soft rock roadway[J].Sustainability, 2022, 14:12587.

[9]牛双建,靖洪文,杨大方.深井巷道围岩主应力差演化规律物理模拟研究[J].岩石力学与工程学报, 2012,31(S2):3811–3820.NIU Shuangjian, JING Hongwen, YANG Dafang. Physical simulation study of principal stress difference evolution law of surrounding rock of deep mine roadways[J].Chinese Journal of Rock Mechanics and Engineering,2012, 31(S2):3811–3820.

[10]牛双建,靖洪文,杨旭旭,等.深部巷道破裂围岩强度衰减规律试验研究[J].岩石力学与工程学报, 2012,31(8):1587–1596.NIU Shuangjian, JING Hongwen, YANG Xuxu, et al.Experimental study of strength degradation law of surrounding rock in fractured zone of deep roadway[J]. Chinese Journal of Rock Mechanics and Engineering, 2012,31(8):1587–1596.

[11] ZAREIFARD M R, FAHIMIFAR A. Analytical solutions for the stresses and deformations of deep tunnels in an elastic-brittle-plastic rock mass considering the damaged zone[J]. Tunnelling and Underground Space Technology,2016, 58:186–196.

[12]陈昊祥,王明洋,燕发源,等.深部巷道围岩塑性区演化的理论模型与实测对比研究[J].岩土工程学报,2022, 44(10):1855–1863.CHEN Haoxiang, WANG Mingyang, YAN Fayuan, et al.Theoretical model for evolution of plastic zone of rock mass around deep tunnels and its comparison with in-situ observation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10):1855–1863.

[13]陈昊祥,戚承志,李凯锐,等.深部巷道围岩分区破裂的非线性连续相变模型研究[J].岩土力学, 2017, 38(4):1032–1040.CHEN Haoxiang, QI Chengzhi, LI Kairui, et al. Nonlinear continuous phase transition model for zonal disintegration of rock masses around deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 38(4):1032–1040.

[14]王卫军,郭罡业,朱永建,等.高应力软岩巷道围岩塑性区恶性扩展过程及其控制[J].煤炭学报, 2015,40(12):2747–2754.WANG Weijun, GUO Gangye, ZHU Yongjian, et al. Malignant development process of plastic zone and control technology of high stress and soft rock roadway[J]. Journal of China Coal Society, 2015, 40(12):2747–2754.

[15]袁超,王卫军,冯涛,等.基于塑性区扩展的巷道围岩控制原理研究[J].采矿与安全工程学报, 2017, 34(6):1051–1059.YUAN Chao, WANG Weijun, FENG Tao, et al. Research on control principles of surrounding rocks of roadway based on expansion of plastic zone[J]. Journal of Mining&Safety Engineering, 2017, 34(6):1051–1059.

[16]余伟健,李可,芦庆和,等.裂隙发育岩体巷道围岩工程特征与变形控制[J].煤炭学报, 2021, 46(11):3408–3418.YU Weijian, LI Ke, LU Qinghe, et al. Engineering characteristics and deformation control of roadways in fractured rock mass[J]. Journal of China Coal Society, 2021,46(11):3408–3418.

[17]李可,余伟健,廖泽,等.不同应力加载速率下深埋泥岩力学特性与扩容特征试验研究[J].煤炭学报, 2023,48(9):3360–3371.LI Ke, YU Weijian, LIAO Ze, et al. A laboratory-testingbased study on mechanical properties and dilatancy characteristics of deeply buried mudstone under different stress loading rates[J]. Journal of China Coal Society,2023, 48(9):3360–3371.

[18]余伟健,潘豹,李可,等.岩–煤–岩组合体力学特性及裂隙演化规律[J].煤炭学报, 2022, 47(3):1155–1167.YU Weijian, PAN Bao, LI Ke, et al. Mechanical properties and fracture evolution law of rock-coal-rock combination[J]. Journal of China Coal Society, 2022, 47(3):1155–1167.

[19] WANG Xiao, WEN Zhijie, JIANG Yujing, et al. Experimental study on mechanical and acoustic emission characteristics of rock-like material under non-uniformly distributed loads[J]. Rock Mechanics and Rock Engineering,2018, 51:729–745.

[20] ZHAO Lunyang, SHAO Jianfu, ZHU Qizhi, et al. Homogenization of rock-like materials with plastic matrix based on an incremental variational princple[J]. International Journal of Plasticity, 2019, 123:145–164.

[21] GOMES Guilherme J C, FORERO John H, VARGAS Jr Eurípedes A, et al. Bayesian inference of rock strength anisotropy:Uncertainty analysis of the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 148:104952.

[22]朱永建,李鹏,王平,等.深部高应力煤巷围岩径向梯度损伤特征试验研究[J].岩石力学与工程学报, 2023,42(11):2643–2654.ZHU Yongjian, LI Peng, WANG Ping, et al. Experimental study on radial gradient damage characteristics of surrounding rock in deep high stress coal roadway[J].Chinese Journal of Rock Mechanics and Engineering,2023, 42(11):2643–2654.

[23] YASITLI NE, UNVER B. 3D numerical modeling of longwall mining with top-coal caving[J]. Int J Rock Mech Min Sci, 2005, 42(2):219–235.

[24] WANG X, WEN ZJ, JIANG YJ. Time-space effect of stress field and damage evolution law of com-pressed coal-rock[J]. Geotech Geol Eng, 2016, 34(6):1933–1940.

[25]杨峰.高应力软岩巷道变形破坏特征及让压支护机理研究[D].徐州:中国矿业大学, 2010.YANG Feng. Research on deformation and failure character and yielding support mechanism in high stress soft rock roadway[D]. Xuzhou:China University of Mining and Technology, 2010.

基本信息:

DOI:10.13532/j.jmsce.cn10-1638/td.2024.03.001

中图分类号:TD315

引用信息:

[1]余伟健,潘豹,吴根水,等.等效非均匀荷载条件下梯形截面岩石力学特性试验研究[J].采矿与岩层控制工程学报,2024,6(03):108-117.DOI:10.13532/j.jmsce.cn10-1638/td.2024.03.001.

基金信息:

国家自然科学基金资助项目(52174076);; 湖南省自然科学基金资助项目(2023JJ30261)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文