| 582 | 3 | 216 |
| 下载次数 | 被引频次 | 阅读次数 |
为揭示煤岩组合体冲击倾向性程度对超低摩擦型冲击地压的影响机制,以不同冲击倾向性煤岩组合体为研究对象,在对煤岩组合试件进行冲击倾向性测定的基础上,采用自行研制的煤岩界面超低摩擦试验装置,以发生超低摩擦效应时的水平位移、动能、摩擦力为指标,探究煤岩组合体冲击倾向性与垂直应力波扰动频率、扰动振幅之间的关系特征。研究结果表明:(1)受扰动频率影响,弱、强冲击倾向煤岩组合体易发生超低摩擦效应的频率显著影响区分别为2.0~3.0, 2.5~3.5 Hz,且随着冲击倾向性程度的增强,频率显著影响区逐渐右移。(2)相比于弱冲击倾向性煤岩组合体,强冲击倾向性煤岩组合体发生超低摩擦效应时水平位移、动能和摩擦力降幅较大,煤块易发生超低摩擦滑动。(3)随着煤岩组合体剩余能量指数的增大,冲击倾向性程度逐渐增强,动能呈指数规律增大,煤块越易发生超低摩擦滑动。研究结果可为超低摩擦型冲击地压的预测和防治提供参考。
Abstract:To reveal the influence mechanism of bursting tendency of coal-rock combination on ultra-low friction-type rockburst, the bursting tendency of the combined coal-rock specimens tendency of was measured, and then the self-developed ultra-low friction test apparatus of coal-rock interface was used to explore the relationship between the bursting tendency of coal-rock combination and the disturbance frequency and amplitude of vertical stress wave by analyzing the horizontal displacement, kinetic energy and friction force. The results show that under the influence of disturbance frequency, the significant influence areas of frequency on the ultra-low friction are 2.0-3.0 Hz and 2.5-3.5 Hz of weak and strong bursting tendency coal-rock samples, respectively. With the increase of bursting tendency, the frequency significant influence area gradually shifts to the right. Compared with the weak bursting tendency coal-rock specimen, the horizontal displacement and kinetic energy of the strong bursting tendency coal-rock specimen are larger and the friction force decreases greatly, favoring ultra-low friction sliding. With the increase of the residual energy index of the coal-rock specimen, the degree of bursting tendency increases and the kinetic energy increases following the exponential law, more easily triggering ultra-low friction sliding. The research results can provide reference for the prevention and early warning of ultra-low friction-type rockburst.
[1] HE Manchao,CHENG Tai,QIAO Yafei,et al.A review of rockburst:Experiments,theories,and simulations[J].Journal of Rock Mechanics and Geotechnical Engineering,2023,15(5):1312-1353.
[2] 陆闯,王元杰,陈法兵,等.基于地音监测技术的多类型冲击地压前兆特征研究[J].采矿与岩层控制工程学报,2023,5(1):013026.LU Chuang,WANG Yuanjie,CHEN Fabing,et al.Study on the precursor characteristics of rockbursts based on acoustic emission monitoring technology[J].Journal of Mining and Strata Control Engineering,2023,5(1):013026.
[3] 荣海,于世棋,王雅迪,等.坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J].采矿与岩层控制工程学报,2022,4(6):063026.RONG Hai,YU Shiqi,WANG Yadi,et al.Analysis of structural instability movement of hard overburden and its influence mechanism on rockburst[J].Journal of Mining and Strata Control Engineering,2022,4(6):063026.
[4] 潘一山,王凯兴.岩体间超低摩擦发生机理的摆型波理论[J].地震地质,2014,36(3):833-844.PAN Yishan,WANG Kaixing.Pendulum-type waves theory on the mechanism of anomalously low friction between rock masses[J].Seismology and Geology,2014,36(3):833-844.
[5] 李利萍,余泓浩,张海涛,等.深部煤岩界面超低摩擦时变模型及能量转化研究[J].力学学报,2023,55(3):686-698.LI Liping,YU Honghao,ZHANG Haitao,et al.Ultra-low friction time-change model and energy conversion of deep coal-rock interface[J].Chinese Journal of Theoreti-cal and Applied Mechanics,2023,55(3):686-698.
[6] 钱七虎.深部地下空间开发中的关键科学问题[A].钱七虎院士论文选集[C].北京:科学出版社,2007:565-584.QIAN Qihu.Key scientific issues in deep underground space development[A].Selections From Academician Qian Qihu′s Theses[C].Beijing:Science Press,2007:565-584.
[7] ZHANG Kun,ZHANG Yichen,ZHANG Sen,et al.St-udy on the energy evolution mechanism of coal and rock with impact tendency under different strain rates[J].Scientific Reports,2023,13(1):13773.
[8] KURLENYA M V,OPARIN V N.Problems of nonlinear geomechanics.Part II[J].Journal of Mining Science,2000,36(4):305-326.
[9] KURLENYA M V,OPARIN V N,BALMASHNOVA E G,et al.On dynamic behavior of self-stressed block media.Part 1.One-dimensional mechanico-mathematical model[J].Journal of Mining Science,2001,37(1):1-9.
[10] 王明洋,戚承志,钱七虎.深部岩体块系介质变形与运动特性研究[J].岩石力学与工程学报,2005,24(16):2825-2830.WANG Mingyang,QI Chengzhi,QIAN Qihu.Study on deformation and motion characteristics of blocks in deep rock mass[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2825-2830.
[11] 吴昊,方秦,王洪亮.深部块系岩体超低摩擦现象的机理分析[J].岩土工程学报,2008,30(5):769-775.WU Hao,FANG Qin,WANG Hongliang.Mechanism of anomalously low friction phenomenon in deep block rock mass[J].Chinese Journal of Geotechnical Engineering,2008,30(5):769-775.
[12] WU Hao,FANG Qin,ZHANG Yadong,et al.Mech-anism of anomalous low friction phenomenon in deep block rock mass[J].Mining Science and Technology,2009,19(4):409-419.
[13] 何满潮,王炀,刘冬桥,等.基于二维数字图像相关技术的块系花岗岩超低摩擦效应实验研究[J].煤炭学报,2018,43(10):2732-2740.HE Manchao,WANG Yang,LIU Dongqiao,et al.Experimental study on ultra-low friction effect of granite block based on two-dimensional digital image correlation technique[J].Journal of China Coal Society,2018,43(10):2732-2740.
[14] 蒋海明,李杰,王明洋.块系岩体滑移失稳中低摩擦效应的理论与试验研究[J].岩土力学,2019,40(4):1405-1412.JIANG Haiming,LI Jie,WANG Mingyang.Theoretical and experimental research on the low-friction effect in slip stability of blocky rock mass[J].Rock and Soil Mechanics,2019,40(4):1405-1412.
[15] LIU D,LIN Y,WANG Y,et al.Experimental study on ultra-low friction effect of granite block under coupled static and dynamic loads[J].Geotechnical and Geological Engineering,2020,38(16):4521-4528.
[16] 李利萍,胡学锦,潘一山,等.不同粗糙度煤岩界面超低摩擦效应与声发射特征试验研究[J].力学学报,2024,56(4):1047-1056.LI Liping,HU Xuejin,PAN Yishan,et al.Experimental study on ultra-low friction effect and acoustic emission characteristics of coal-rock interface with different roughnesses[J].Chinese Journal of Theoretical and Applied Mechanics,2024,56(4):1047-1056.
[17] 李利萍,余泓浩,张海涛,等.含软弱夹层煤岩界面超低摩擦效应试验研究[J].岩石力学与工程学报,2023,42(7):1638-1649.LI Liping,YU Honghao,ZHANG Haitao,et al.Experimental study on ultra-low friction effect at the interface of coal rockcontaining weak sandwich[J].Chinese Journal of Rock Mechanics and Engineering,2023,42(7):1638-1649.
[18] 宫凤强,赵英杰,王云亮,等.煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J].煤炭学报,2022,47(5):1974-2010.GONG Fengqiang,ZHAO Yingjie,WANG Yunliang,et al.Research progress of coal bursting liability indices and coal burst “human-coal-environment” three elements mechanism[J].Journal of China Coal Society,2022,47(5):1974-2010.
[19] 鞠文君,卢志国,高富强,等.煤岩冲击倾向性研究进展及综合定量评价指标探讨[J].岩石力学与工程学报,2021,40(9):1839-1856.JU Wenjun,LU Zhiguo,GAO Fuqiang,et al.Research progress and comprehensive quantitative evaluation index of coal rock bursting liability[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1839-1856.
[20] 王岗,潘一山,肖晓春,等.组合煤岩体冲击倾向性及破坏特征的电荷规律试验研究[J].中国安全科学学报,2016,26(7):135-140.WANG Gang,PAN Yishan,XIAO Xiaochun,et al.Experimental study on charge law of coal-rock bodies rock burst tendency and failure characteristics[J].China Saf-ety Science Journal,2016,26(7):135-140.
[21] 肖晓春,金晨,赵鑫,等.组合煤岩冲击倾向电荷判据试验研究[J].岩土力学,2017,38(6):1620-1628.XIAO Xiaochun,JIN Chen,ZHAO Xin,et al.Experimental study on the charge criterion of coal-rock bodies burst tendency[J].Rock and Soil Mechanics,2017,38(6):1620-1628.
[22] 左建平,宋洪强.煤岩组合体的能量演化规律及差能失稳模型[J].煤炭学报,2022,47(8):3037-3051.ZUO Jianping,SONG Hongqiang.Energy evolution law and differential energy instability model of coal-rock combined body[J].Journal of China Coal Society,2022,47(8):3037-3051.
[23] 陈光波,李谭,张国华,等.基于剩余能量释放速率指数的煤岩组合体冲击倾向性判定[J].岩石力学与工程学报,2023,42(6):1366-1383.CHEN Guangbo,LI Tan,ZHANG Guohua,et al.Determination of bursting liability of coal-rock combined body based on residual energy release rate index[J].Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1366-1383.
[24] 中国国家标准化管理委员会.GB/T 25217.3—2019,冲击地压测定、 监测与防治方法第3部分:煤岩组合试件冲击倾向性分类及指数的测定方法[S].北京:中国标准出版社,2019.Standardization Administration of China.GB/T 25217.3-2019,Methods for test,monitoring and prevention of rock burst-Part 3:Classification and laboratory test method on bursting liability of coal-rock combinations sample[S].Beijing:China Standard Press,2019.
[25] 李新平,汪斌,周桂龙.我国大陆实测深部地应力分布规律研究[J].岩石力学与工程学报,2012,31(S1):2875-2880.LI Xinping,WANG Bin,ZHOU Guilong.Study on the distribution law of in-situ stress in China′s mainland[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):2875-2880.
[26] 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):91-99.ZHOU Hongwei,XIE Heping,ZUO Jianping.Research progress of rock mechanical behavior under deep high geostress[J].Advances in Mechanics,2005,35(1):91-99.
[27] 刘涛,杨鹏,吕文生,等.岩石在不同应力幅值下受低频循环扰动的力学特性试验[J].煤炭学报,2017,42(9):2280-2286.LIU Tao,YANG Peng,LYU Wensheng,et al.Rock mechanical properties experiments with low-frequency circulation disturbance under different stress amplitudes[J].Journal of China Coal Society,2017,42(9):2280-2286.
[28] 何满潮,刘冬桥,宫伟力,等.冲击岩爆试验系统研发及试验[J].岩石力学与工程学报,2014,33(9):1729-1739.HE Manchao,LIU Dongqiao,GONG Weili,et al.Development of a testing system for impact rockbursts[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(9):1729-1739.
基本信息:
DOI:10.13532/j.jmsce.cn10-1638/td.2024.04.011
中图分类号:TD324
引用信息:
[1]李利萍,胡学锦,潘一山,等.煤岩组合体冲击倾向性对超低摩擦型冲击地压的影响机制[J].采矿与岩层控制工程学报,2024,6(04):23-33.DOI:10.13532/j.jmsce.cn10-1638/td.2024.04.011.
基金信息:
国家自然科学基金资助项目(51974148);; 辽宁省“兴辽英才计划”资助项目(XLYC1807130)