页岩气层自支撑裂缝气-水流动规律试验研究Experimental study on two-phase gas-water flow in self-supported fractures of shale gas reservoir
杨学锋,常程,程秋洋,谢维扬,胡浩然,张振宇
摘要(Abstract):
为探究页岩气层自支撑裂缝气-水流动规律,以四川盆地龙马溪组页岩为研究对象,开展了不同围压作用下页岩垂直和平行层理自支撑裂缝的气-水两相渗流试验。试验结果表明:页岩裂缝表面凸起高度呈高斯分布,随着自支撑裂缝表面凸起数量及高度的增加,等效缝宽和气/水绝对渗透率呈增加趋势;垂直层理裂缝表面粗糙程度高于平行层理裂缝,导致垂直层理裂缝导流能力普遍高于平行层理裂缝;相较于拉张型裂缝,垂直层理剪切型裂缝绝对渗透率升高了3~10倍,平行层理剪切型裂缝绝对渗透率升高了2~4倍;水相流体相对渗透率与水相分流量正相关,水相分流量较高时,水相受到围压以及裂缝表面形貌的影响明显高于气相,裂缝等渗点相对渗透率随着围压升高而降低,随着粗糙度升高而降低。相较于拉张型裂缝,剪切型裂缝内相间阻力降低,水相相对渗透率相较气相升高更加明显,等渗点水相分流量未发生明显变化,垂直层理剪切型裂缝等渗点相对渗透率升高1.39~1.71倍,平行层理剪切型裂缝等渗点相对渗透率升高1.02~1.39倍。研究认识对于指导考虑自支撑缝网导流能力保护的页岩气井控压生产制度优化具有重要意义。
关键词(KeyWords): 页岩;自支撑裂缝;气-水流动;表面粗糙度;相对渗透率
基金项目(Foundation): 中国石油天然气集团公司科技专项资助项目(2023ZZ21);; 中国石油西南油气田公司博士后科研资助项目(20230304-13)
作者(Author): 杨学锋,常程,程秋洋,谢维扬,胡浩然,张振宇
DOI: 10.13532/j.jmsce.cn10-1638/td.2024-1275
参考文献(References):
- [1]聂海宽,党伟,张珂,等.中国页岩气研究与发展20年:回顾与展望[J].天然气工业,2024,44(3):20-52.NIE Haikuan,DANG Wei,ZHANG Ke,et al.Two decades of shale gas research&development in China:review and prospects[J].Natural Gas Industry,2024,44(3):20-52.
- [2]邹才能,潘松圻,荆振华,等.页岩油气革命及影响[J].石油学报,2020,41(1):1-12.ZOU Caineng,PAN Songqi,JING Zhenhua,et al.Shale oil and gas revolution and its impact[J].Acta Petrolei Sinica,2020,41(1):1-12.
- [3]孙金声,许成元,康毅力,等.致密/页岩油气储层损害机理与保护技术研究进展及发展建议[J].石油钻探技术,2020,48(4):1-10.SUN Jinsheng,XU Chengyuan,KANG Yili,et al.Research progress and development recommendations covering damage mechanisms and protection technologies for tight/shale oil and gas reservoirs[J].Petroleum Drilling Techniques,2020,48(4):1-10.
- [4]任岚,林然,赵金洲,等.页岩气水平井增产改造体积评价模型及其应用[J].天然气工业,2018,38(8):47-56.REN Lan,LIN Ran,ZHAO Jinzhou,et al.A stimulated reservoir volume (SRV) evaluation model and its application to shale gas well productivity enhancement[J].Natural Gas Industry,2018,38(8):47-56.
- [5]朱海燕,沈佳栋,周汉国.支撑裂缝导流能力的数值模拟[J].石油学报,2018,39(12):1410-1420.ZHU Haiyan,SHEN Jiadong,ZHOU Hanguo.Numerical simulation on propped fracture conductivity[J].Acta Petrolei Sinica,2018,39(12):1410-1420.
- [6]邹雨时,张士诚,马新仿.四川须家河组页岩剪切裂缝导流能力研究[J].西安石油大学学报(自然科学版),2013,28(4):69-72,77,10.ZOU Yushi,ZHANG Shicheng,MA Xinfang.Experimental study on flow guiding capacity of shear fracture in the shale of Xujiahe Formation in Sichuan[J].Journal of Xi'an Petroleum University(Natural Science Edition),2013,28(4):69-72,77,10.
- [7]杨睿.页岩储层气水两相多尺度运移机制和模型研究[D].徐州:中国矿业大学,2022.YANG Rui.Research on multiscale transport mechanism and model of gas-water two phase flow in shale reservoir[D].Xuzhou:China University of Mining and Technology,2022.
- [8]黄婷,翟成,刘厅,等.自支撑条件页岩裂缝的压缩特性分布及各向异性演化[J].煤炭学报,2023,48(12):4336-4351.HUANG Ting,ZHAI Cheng,LIU Ting,et al.Compression characteristic distribution and anisotropic evolution of shale fracture with shale self-supporting particles[J].Journal of China Coal Society,2023,48(12):4336-4351.
- [9]纪国法,张公社,李英存,等.考虑非达西和气水相渗的页岩气支撑裂缝缝内气相导流能力研究[J].科学技术与工程,2016,16(33):34-39.JI Guofa,ZHANG Gongshe,LI Yingcun,et al.Research of gas phase conductivity under non-darcy and gas-water flow condition in shale gas reservoir propped fracture[J].Science,Technology and Engineering,2016,16(33):34-39.
- [10]LUO Y,ZHANG Z,ZHANG L,et al.Influence of fracture roughness and void space morphology on nonlinear fluid flow through rock fractures[J].The European Physical Journal Plus,2022,137(11):1288.
- [11]马东旭,朱维耀,亓倩,等.页岩微裂缝导流能力水伤害实验分析[J].天然气工业,2017,37(S1):58-65.MA Dongxu,ZHU Weiyao,QI Qian,et al.Experimental analysis of water injury in shale microfracture inflow capacity[J].Natural Gas Industry,2017,37(S1):58-65.
- [12]LOMIZE G M.Flow in fractured rocks[M].Moscow:Gesenergoizdat,1951.
- [13]BARTON N,BANDIS S,BAKHTAR K.Strength,deformation and conductivity coupling of rock joints[J].International Journal of Rock Mechanics&Geomechanics Abstracts,1985,22(3):121-140.
- [14]段慕白,李皋,孟英峰,等.不同节理粗糙度系数的裂隙渗流规律研究[J].水资源与水工程学报,2013,24(5):41-44.DUAN Mubai,LI Gao,MENG Yingfeng,et al.Research on regulation of fracture seepage in different joint roughness coefficients[J].Journal of Water Resources and Water Engineering,2013,24(5):41-44.
- [15]陈欣,周小涵,许彬,等.裂隙岩体宏细观剪切损伤力学行为研究[J].岩石力学与工程学报,2022,41(12):2509-2521.CHEN Xin,ZHOU Xiaohan,XU Bin,et al.Investigation on the macro-meso shear damage mechanical behaviors of fractured rocks[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(12):2509-2521.
- [16]李樯,马丹,张吉雄,等.断层带破碎岩体采动剪切变形与渗透性演化规律[J].煤田地质与勘探,2023,51(8):150-160.LI Qiang,MA Dan,ZHANG Jixiong,et al.Mining-induced shear deformation and permeability evolution law of crushed rock mass in fault zone[J].Coal Geology&Exploration,2023,51(8):150-160.
- [17]考佳玮,金衍,付卫能,等.深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J].岩石力学与工程学报,2018,37(6):1332-1339.KAO Jiawei,JIN Yan,FU Weineng,et al.Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(6):1332-1339.
- [18]蒋廷学,周健,张旭,等.深层页岩气井裂缝扩展及导流特性研究及展望[J].中国科学:物理学力学天文学,2017,47(11):33-40.JIANG Tingxue,ZHOU Jian,ZHANG Xu,et al.Overview and prospect of fracture propagation and conductivity characteristics in deep shale gas wells[J].Scientia Sinica(Physica,Mechanica&Astronomica),2017,47(11):33-40.
- [19]尹丛彬.页岩压裂裂缝渗透率的测试与分析[J].天然气工业,2018,38(3):60-68.YIN Congbin.Test and analysis on the permeability of fractured fractures in shale reservoirs[J].Natural Gas Industry,2018,38(3):60-68.
- [20]李博,汪佳飞,刘日成,等.岩石裂隙压剪变形破坏与非线性渗流特性[J].工程科学与技术,2021,53(6):103-112.LI Bo,WANG Jiafei,LIU Richeng,et al.Deformation,failure and nonlinear flow characteristics of a fracture subject to normal stress and shear displacement[J].Advanced Engineering Science and Technology,2021,53(6):103-112.
- [21]夏才初,喻强锋,钱鑫,等.常法向刚度条件下岩石节理剪切-渗流特性试验研究[J].岩土力学,2020,41(1):57-66,77.XIA Caichu,YU Qiangfeng,QIAN xin,et al.Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness[J].Rock and Soil Mechanics,2020,41(1):57-66,77.
- [22]XIONG Xiangbin,LI Bo,JIANG Yujing,et al.Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(8):1292-1302.
- [23]陈益峰,周创兵,盛永清.考虑峰后力学特性的岩石节理渗流广义立方定理[J].岩土力学,2008,29(7):1825-1831.CHEN Yifeng,ZHOU Chuangbing,SHENG Yongqing.Ageneralized cubic law for seepage flow through rock joints considering post-peak mechanical response[J].Rock and Soil Mechanics,2008,29(7):1825-1831.
- [24]尹虎,王新海,张芳,等.吸附气对气水两相流页岩气井井底压力的影响[J].断块油气田,2013,20(1):74-76,84.YIN Hu,WANG Xinhai,ZHANG Fang,et al.Influence of adsorbed gas on bottomhole pressure of shale gas wells with gas-water two-phase flow[J].Fault-Block Oil&Gas Field,2013,20(1):74-76,84.
- [25]郭小哲,王晶,刘学锋.页岩气储层压裂水平井气-水两相渗流模型[J].石油学报,2016,37(9):1165-1170.GUO Xiaozhe,WANG Jing,LIU Xuefeng.Gas-water two phase porous flow model of fractured horizontal well in shale gas reservoir[J].Acta Petrolei Sinica,2016,37(9):1165-1170.
- [26]王东英,姚军,陈掌星,等.页岩微裂缝内气-水两相流动规律[J].科学通报,2019,64(31):3232-3243.WANG Dongying,YAO Jun,CHEN Zhangxing,et al.Gas-water two-phase transport properties in shale microfractures[J].Chinese Science Bulletin,2019,64(31):3232-3243.
- [27]LI T,SONG H,WANG J,et al.Ananalytical method for modeling and analysis gas-water relative permeability in nano scale pores with interfacial effects[J].Int.J.Coal Geol.,2016,159:71-81.
- [28]SHAD S,MAINI B B,GATES I D.Effect of gap and flow orientation on two-phase flow in an oil-wet gap:relative permeability curves and flow structures[J].International Journal of Multiphase Flow,2013,57:78-87.
- [29]FOURAR M,LENORMAND R.A viscous coupling model for relative permeabilities in fractures[A].SoftwarePractice and Experience[C].1998.
- [30]田正华,李庚新,汤伏全.基于残差改正模型的三维激光扫描点云坐标转换[J].地理空间信息,2019,17(8):98-101,12.TIAN Zhenghua,LI Gengxin,TANG Fuquan.Coordinate conversion of 3D laser scanning point cloud based on the residual correction model[J].Geospatial Information,2019,17(8):98-101,12.
- [31]TSE R,CRUDEN D M.Estimating joint roughness coefficients[J].International Journal of Rock Mechanics and Mining Sciences,1979,16(5):303-307.
- [32]LUO Y,WANG Y,GUO H,et al.Relationship between joint roughness coefficient and statistical roughness parameters and its sensitivity to sampling interval[J].Sustainability,2022,14(20):13597.
- [33]XUE Kangsheng,ZHANG Zhenyu,JIANG Yujing,et al.Estimating the permeability of fractured rocks using topological characteristics of fracture network[J].Computers and Geotechnics,2023,157:105337.
- [34]WANG Yakun,ZHANG Zhenyu,LUO Yong,et al.Watergas flow in rough rock fractures:insights from coupled triaxial compression experiments[J].Hydrogeology Journal,2022,30(5):1569-1581.
- [35]LIU X J,XIONG J,LIANG L X,et al.Analysis of the wettability of Longmaxi Formation Shale in the South Region of Sichuan Basin and its influence[J].Natural Gas Geoscience,2014,25(10):1644-1652.
- [36]LIU Huihai,JIANG Qinghui,ZHOU Zuyang,et al.Twophase flow properties of a horizontal fracture:the effect of aperture distribution[J].Advances in Water Resources,2015,76:43-54.
- [37]张宇鹏.裂隙气液两相流流动特征与表面张力模型[D].沈阳:东北大学,2019.ZHANG Yupeng.Flow characteristics and surface tension modeling of gas-liquid two-phase flow in a fissure[D].Shenyang:Northeastern University,2019.
- [38]GONG Y B,SEDGHI M,PIRI M.Two-phase relative permeability of rough-walled fractures:a dynamic porescale modeling of the effects of aperture geometry[J].Water Resources Research,2021,57(12):e2021WR030104.
- [39]WANG Yakun,ZHANG Zhenyu,LIU Xiaoqian,et al.Relative permeability of two-phase fluid flow through rough fractures:the roles of fracture roughness and confining pressure[J].Advances in Water Resources,2023,175:104426.
- [40]ZHANG Z,NEMCIK J.Friction factor of water flow through rough rock fractures[J].Rock Mechanics and Rock Engineering,2013,46(5):1125-1134.