实验室煤体变形特征分析及弹性模量关联模型Laboratory study on deformation characteristics of coal mass and correlation model of elastic modulus
雷顺,高富强
摘要(Abstract):
煤体的弹性模量是煤体分类系统的输入参数之一。通过对实验室煤样基础力学参数筛选、挖掘,运用数理统计软件SPSS进行聚类分析,探究煤体各物理力学参数自身分布规律及相互之间的关系,在此基础上采用BP神经网络建立弹性模量关联模型。研究结果表明:煤体弹性模量与孔隙率呈负相关关系,随着孔隙率的变大煤体弹性模量减小,即煤体抵抗弹性变形的能力越低;随着泊松比的升高煤体弹性模量增大,即煤体抵抗变形的能力越强;高弹性能频发大多集中在弹性模量较低、孔隙率中等偏上的重叠区域。此外,按煤体抵抗变形能力分为4级:弱(0~3.6 GPa)、中等(3.6~5.5 GPa)、强(5.5~8.5 GPa)、非常强(8.5~12.8 GPa)。建立了基于煤体基础力学参数预测其弹性模量的关联模型以评估煤体的变形特征,煤体弹性模量预测值平均误差为6.3%,表明所提出的煤样弹性模量关联模型切实可行,可为煤岩体分类提供参考。
关键词(KeyWords): 煤样;弹性模量;变形;孔隙率;泊松比;关联模型
基金项目(Foundation): 国家自然科学基金面上资助项目(51774185)
作者(Author): 雷顺,高富强
DOI: 10.13532/j.jmsce.cn10-1638/td.20210820.002
参考文献(References):
- [1] QI C,FOURIE A,CHEN Q. Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill[J]. Construction and Building Materials,2018,159:473-478.
- [2] FENG Z,ZHANG C,DONG F,et al. Elastic modulus evolution of triaxially stressed mudstone at high temperature up to 400℃[J].Energy Science&Engineering,2020,8(11):4126-4135.
- [3]张振南,茅献彪,葛修润.松散岩块侧限压缩模量的试验研究[J].岩石力学与工程学报,2004,23(18):3049-3054.ZHANG Zhennan,MAO Xianbiao,GE Xiurun. Testing study on compressive modulus of loose rock blocks under confining constraint[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(18):3049-3054.
- [4]李涛,马永君,刘波,等.循环荷载作用下冻结灰砂岩强度特征与弹性模量演化规律[J].煤炭学报,2018,43(9):76-81.LI Tao,MA Yongjun,LIU Bo,et al. Strength characteristics and elastic modulus evolution of frozen gray sandstone under cyclic loading[J].Journal of China Coal Society,2018,43(9):76-81.
- [5]王凯,蒋一峰,徐超.不同含水率煤体单轴压缩力学特性及损伤统计模型研究[J].岩石力学与工程学报,2018,37(5):1070-1079.WANG Kai,JIANG Yifeng,XU Chao. Mechanical properties and statistical damage model of coal with different moisture contents under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1070-1079.
- [6]朱传奇,谢广祥,王磊,等.含水率及孔隙率对松软煤体强度特征影响的试验研究[J].采矿与安全工程学报,2017,34(3):601-607.ZHU Chuanqi,XIE Guangxiang,WANG Lei,et al. Experimental study on the influence of moisture content and porosity on soft coal strength characteristics[J]. Journal of Mining and Safety Engineering,2017,34(3):601-607.
- [7]宋勇军,雷胜友,毛正君,等.干燥和饱水状态下炭质板岩力学特性试验[J].煤炭科学技术,2014,42(10):48-52.SONG Yongjun,LEI Shengyou,MAO Zhengjun,et al. Testing study on mechanical property of carbonaceous slate under dry and saturated states[J]. Coal Science and Technology,2014,42(10):48-52.
- [8]张安斌,张艳博,刘祥鑫,等.水对泥质粉砂岩物理力学性能影响的试验研究[J].煤炭科学技术,2015,43(8):67-71.ZHANG Anbin,ZHANG Yanbo,LIU Xiangxin,et al. Test study on water affected to physical mechanics performances of muddy siltstone[J]. Coal Science and Technology,2015,43(8):67-71.
- [9]李俊乾,刘大锰,卢双舫,等.中高煤阶煤岩弹性模量及其影响因素试验研究[J].煤炭科学技术,2016,44(1):102-108.LI Junqian,LIU Dameng,LU Shuangfang,et al. Experimental study on elastic modulus of medium-high rank coals and its influencing factors[J]. Coal Science and Technology,2016,44(1):102-108.
- [10]王观石,王星光,胡世丽.岩体软弱夹层的弹性模量动力测试方法[J].岩石力学与工程学报,2015,34(9):1828-1835.WANG Guanshi,WANG Xingguang,HU Shili. A dynamic measurement method of elastic modulus of weak interlayer of rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1828-1835.
- [11]陈建胜,陈从新,鲁祖德,等.原位直剪试验中岩体弹性模量求取方法探讨[J].岩土力学,2011,32(11):3401-3413.CHEN Jiansheng,CHEN Congxin,LU Zude,et al. Discussion of computational method of rock elastic modulus on in-situ direct shear test[J]. Rock and Soil Mechanics,2011,32(11):3401-3413.
- [12]李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):905-910.LI Zhenhua,XU Yanchun,LI Longfei,et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining&Safety Engineering,2015,32(6):905-910.
- [13]尹光志,李铭辉,李文璞,等.基于改进BP神经网络的煤体瓦斯渗透率预测模型[J].煤炭学报,2013,38(7):1179-1184.YIN Guangzhi,LI Minghui,LI Wenpu,et al. Model of coal gas permeability prediction based on improved BP neural network[J].Journal of China Coal Society,2013,38(7):1179-1184.
- [14]张春会,赵全胜,于永江.考虑力学参数关联的非均质煤概率模型[J].岩土力学,2011,32(2):564-570.ZHANG Chunhui,ZHAO Quansheng,YU Yongjiang. Probability model of heterogeneous coal considering correlation of mechanical parameters[J]. Rock and Soil Mechanics,2011,32(2):564-570.
- [15]姚强岭,李学华,朱柳,等.煤岩体地质力学参数原位测试系统开发与应用[J].中国矿业大学学报,2019,48(6):1169-1176.YAO Qiangling,LI Xuehua,ZHU Liu,et al. Development and application of in-situ testing system for geomechanical parameters of coal and rock mass[J]. Journal of China University of Mining and Technology,2019,48(6):1169-1176.
- [16]蔡美峰,何满潮,刘东燕.岩石力学与工程(第二版)[M].北京:科学出版社,2013.
- [17] BEIKI M,BASHARI A,MAJDI A. Genetic programming approach for estimating the deformation modulus of rock mass using sensitivity analysis by neural network[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(7):1091-1103.
- [18]闫露.煤岩体的强度准则研究[D].重庆:重庆大学,2014.
- [19]赵鹏翔,何永琛,李树刚,等.类煤岩材料煤岩组合体力学及能量特征的煤厚效应分析[J].采矿与安全工程学报,2020,37(5):1067-1076.ZHAO Pengxiang,HE Yongchen,LI Shugang,et al. Coal thickness effect on mechanics and energy characteristics of coal-rock combination model[J]. Journal of Mining and Safety Engineering,2020,37(5):1067-1076.
- [20]张志镇.岩石变形破坏过程中的能量演化机制[D].徐州:中国矿业大学,2013.